Руководства, Инструкции, Бланки

луч стробоскоп инструкция img-1

луч стробоскоп инструкция

Рейтинг: 4.0/5.0 (1866 проголосовавших)

Категория: Инструкции

Описание

Стробоскоп луч инструкция - интересный материал

Стробоскоп луч инструкция

Здравствуйте можете поподробнее объяснить как работает стробоскоп на автономном питании. Надо взять аккумулятор на 12 вольт. Сайт Паяльник существует только за счет рекламы, поэтому мы были бы Вам благодарны если Вы внесете сайт в список исключений. Имя: Александр Михайлович Skype: mihal-66 mail. В нашей деревне с этим проблема. Неправильная установка момента зажигания всего на 2—3° и неисправности регуляторов могут явиться причиной повышенного расхода топлива, перегрева двигателя потери мощности и могут даже сократить срок службы двигателя. Однако, поскольку длительность импульсов мала, а их скважность в нормальном режиме не менее 15, перегрева и выхода из строя светодиодов не отмечено. Емкостным датчиком может служить простой крокодил. К сожалению, срок службы импульсных ламп невелик, да и приобрести новую, нужного типа непросто. Я собрал схему, перепроверил. К слову, взял он за настройку мелоч, ещё и компрессию за одно померил.

Сообщение Группа: Активные пользователи Сообщений: 711 Регистрация: 14. Используем экранированный провод, экран которого подсоединяется к земле. Техника: буран 640А "Красный - на "+" 12в. Быстрый переход Похожие темы Тема Автор Раздел Ответов Последнее сообщение artem34 Авторынок 19 02. Конденсатор С3 заряжен плюс со стороны инверсного выхода. заряжается он через резистор R3. Профессиональный, с регулировкой индуктивности. В отечественной фирме В зарубежной фирме В интернет-магазине На аукционе По объявлению У знакомых Сделал сам Что такое трансивер? Корпусом является корпус от фонаря. Посмотрите «», на нем вы увидите стробоскоп который питается за счет батареек, то есть на автономном питании.

стробоскоп автомобильный "ас-2" и стб- 04.01 "луч"

Имя: Юрий Павлович Техника: Рысь УС440-113 У пихтогон52 сторб "сенсор" он имеет маленький встроенный импульсный трансформатор который создает запальный импульс на лампу, на твоём kaktus схема немного проще, без этого импульсника, вот я ему и предложил переделать как у тебя. Сидел в гараже и ковырялся с зажиганием скутера, понадобился стробоскоп. Посоветуйте сверхяркие диоды для схемы на рисунке 3. Питают прибор от бортовой сети автомобиля. Провереная схема на светодиодах, правда поставил 6 светодиодов. Импульс напряжения с датчика, пройдя через цепь С1 R1 R2 поступает на тактовый вход триггера DD1. Хотел сначала заморочиться и сделать самостоятельно, но это все оттягивалось и оттягивалось, а ту надыбал сайт где можно заказать ручку КПП с подсветкой. Все эти приборы мне еще не раз пригодятся. Заметим, что обычно время пользования прибором не превышает пяти минут.

После разряда конденсаторов С2, С3 лампа Н1 гаснет, и конденсаторы снова заряжаются через резисторы R5, R6 до напряжения 420—450 В. Диоды V7, V9 устраняют обратные выбросы тока коллектора транзисторов V6, V8 в моменты их закрывания.

Имя: Юрий Павлович Техника: Рысь УС440-113 Ребята не путайте два различных стробоскопа, хоть и схоже название но могут иметь различный принцип действия, так есть стробы со светодиодами, есть с газоразрядной лампой. Будут вопросы- пишите Обязательно должна быть шкала с меткой 10 и Т? К концу следующей недели должен быть. Работает отлично, проверено на ВАЗ2108. «Электрооборудование автомобиля» - Москва: «За рулем», 1999 Банников С. В общем оказалось, что это стенд компьютерной диагностики ДВС.

Другие статьи

Советский стробоскоп ЛУЧ для автомобиля

Советский стробоскоп "ЛУЧ" для автомобиля

Корпус другой, но судя по проводам - схема такая же. У ЛУЧа провод на распределитель проходной, т.е. через него далее идет на свечу, и у вашего так же. А развернуть и глянуть на лампу? Или целиком отдадите?

Дмитрий М. как стеклянная 6Н7С

Нет! Там цоколь семиштырьковый пальчиковый!

Уже давно не вникаю в собственный автомобиль, а доверяюсь тем, кто это делает это ежедневно ( ремонтируя чужие автомобили). С меня спрос минимален.
Но хочу высказать нек. соображения по "стробскопированию"
Для классических систем зажигания вполне нормальным будет установка по меткам на шкивах лентопротяжного. пардон, кривошипно-шатунного. Далее вариации - плюс-минус для достижения максимальной детонационной стойкости при максимальной же "приёмистости". Стробоскопом в этом случае делается то же самое, с чуть меньшими телодвижениями, но с чуть большими материальными затратами.
Простейший стробоскоп делается из неоновой лампочки. Я применял "эксклюзивные" лампы от виниловых вертушек. Когда люди начали говорить о СВЕТОДИОДАХ, мне уже было не до стробскопирования, потому как за две-три сотни рублей путем подключения к диагностическому разъёму даже на ширпотребных СТО можно было (стало можно), не слезая с сидушки, получить полную информацию о системе.
Далее: светодиоды оч. классно можно использовать для стробоскопов. Особенно яркие и сверхяркие.
Но если захочется восстановить старый "ЛУЧ", то можно попробовать широкораспостранённые лампы от одноразовых фотоаппаратов. Широкораспостранённые, в том смысле ,что они никому не нужны после использования фотоаппарата по назначению. Зайдите в любой " фото-проявочный" пункт и спросите.

Стробоскоп луч инструкция - Доступная информация

Стробоскоп луч инструкция

Резистор R8 обеспечивает разряд конденсаторов С4, С5, C6 в промежутках между этими выбросами, благодаря чему напряжение на конденсаторах при остановленном двигателе не превышает нормы. Кроме того, эти диоды защищают транзисторы V6, V8 в случае ошибочной полярности подключения стробоскопа. Собрал на светодиодах, проверил - работает. Разрядник F1, включенный между распределителем и свечей зажигания, обеспечивает необходимое напряжение высоковольтного импульса для поджига лампы вне зависимости от расстояния между электродами свечи, давления в камере сгорания и других факторов. Работа стробоскопа основана на так называемом стробоскопическом эффекте. При этом снижается коэффициент полезного действия преобразователя, а главное, он без каких-либо видимых причин может начать генерировать высокочастотные синусоидальные колебания с частотой 50—100 кГц.

Тот конец штекера, где торчит "штырь" - втыкается в катушку. Одна из них — подвижная — размещена на коленчатом валу либо на маховике, либо на шкиве привода генератора. а другая — на корпусе двигателя. Примерно через 15 мс конденсатор зарядится настолько, что триггер будет снова переключен в нулевое состояние по входу R. Заметим, что обычно время пользования прибором не превышает пяти минут. При этом снижается коэффициент полезного действия преобразователя, а главное, он без каких-либо видимых причин может начать генерировать высокочастотные синусоидальные колебания с частотой 50—100 кГц.

Не пойму, что может быть?

Стробоскоп луч инструкция - скачивание разрешено.

Тот конец штекера, где торчит "штырь" - втыкается в катушку. Тот "Луч", которым пользуюсь я, сделан в виде "фонарика": с одной стороны лампа, с другой 3 провода: "+", "-" и "искра". Собрал стробоскоп на светодиодах, отлично работает. Я собрал схему, перепроверил. Основным элементом прибора является импульсная безынерционная стробоскопическая лампа Н1 типа СШ-5, вспышки которой происходят в моменты появления искры в свече первого цилиндра двигателя. Освещая, например, вращающееся колесо вспышками, следующими с частотой, равной частоте его вращения, можно зрительно остановить колесо, что легко заметить по положению какой - либо метки на нем. С помощью телефона нашёл эту не хитрую схему, собрал за 30 мин - работает. Список используемой литературы: Беляцкий П.

У меня при подключении стробоскопа работают оба цилиндра проверялось на проводах "Цезарь" и "родных от Пассата В2". Сайт Паяльник существует только за счет рекламы, поэтому мы были бы Вам благодарны если Вы внесете сайт в список исключений.

После разряда конденсаторов С2, С3 лампа Н1 гаснет, и конденсаторы снова заряжаются через резисторы R5, R6 до напряжения 420—450 В. Лампа зажигается, и накопительные конденсаторы С2, С3 разряжаются через нее. Попробовал подсоединить свечу - болтается в пластмассовом наконечнике тройника, и не доходит до контакта. При этом энергия, накопленная в конденсаторах С2, С3, преобразуется в световую энергию вспышки лампы. У меня при подключении стробоскопа работают оба цилиндра проверялось на проводах "Цезарь" и "родных от Пассата В2". После подключения выводов Х5, Х6 к аккумулятору начинает работать преобразователь напряжения, представляющий собой симметричный мультивибратор. Электрическая принципиальная схема автомобильного стробоскопа приведена на рис.

Стробоскоп луч инструкция - Информация для всех

Стробоскоп луч инструкция

Стробоскоп — на вид похож на пистолет но он имеет разные формы, в форме ночного фонаря есть, в форме пистолета В основном они такие идутпри помощи данного агрегата можно проверить правильно ли выставлено зажигание на автомобиле или же нет, но данному агрегату тоже не всегда можно доверять Он выставляет то правильно, но вот понять какое именно для автомобиля нужно зажигание трамблёр вам уже не скажет поэтому и без него можно выставить зажигание на автомобиле по средством езды, то есть на дороге как многие говорят. По внешним факторам такой стробоскоп напоминает по своей форме пистолет, а так же он имеет схожие черты с ручным радаром для установки скорости, которым по большей степени используется в правоохранительных органах, в основном в «ГАИ». Стоимость такого стробоскопа обычно меньше, в отличие от стробоскопа который напоминает по своей форме пистолет. Но как правило стробоскоп формы фонаря обладает гораздо меньшим функционалом, в основном он служит лишь для установки момента зажигания. Питается бортовой стробоскоп обычно от аккумуляторной батареи, два зажима которые идут от стробоскопа подсоединяются к клемам аккумулятора. «Плюсовой» зажим стробоскопа — подсоединяется к клеме «+» аккумулятора. «Минусовой» зажим стробоскопа — подсоединяется к клеме «-» аккумулятора. После чего стробоскоп начинает питаться от аккумулятора, и за счёт этого он получает энергию на которой он в дальнейшем и работает. С его помощью можно понять правильно ли установлен момент зажигания на автомобили или. А что будет если момент зажигания будет установлено не правильно? В этом случае с машиной может начаться ряд проблем, таких как: Потеря мощности у двигателя автомобиля. А так же неустойчивая работа двигателя. В основном это проявляется на холостом ходу. Ко всему этому может добавиться быстрое перегревание двигателя. А так же увеличится расход топлива. Из-за неправильно установленного момента зажигания может быть еще ряд проблем, таких например как затруднённый пуск двигателя и многое другое. Как отрегулировать момент зажигания, вы найдёте в самом низу статьи в рубрике «» Более подробно об не правильно установленном моменте зажигания: Во-первых не правильно установленный момент разделяется на две группы. Первая группа это раннее зажигание. Вторая группа это позднее зажигание. Раннее зажигание: Если вдруг момент зажигания на вашем автомобиле установлен ранее, то в таком случае поршень просто не будет доходить до верхней мертвой точки «ВМТ», потому что искра из-за раннего зажигания будет попадать в камеру сгорания до того, пока поршень будет только ещё идти к верху. Из-за чего двигатель у автомобиля будет хуже набирать обороты, а расход топлива будет увеличен. Позднее зажигание: В этом случае поршень уже будет доходить до верха и начнёт возвращаться уже обратно, а в этот момент когда он уже идёт вниз смесь воспламеняется, из-за этого давление на поршень упадёт и в связи с этим мощность у двигателя тоже будет падать. Зажигание должно быть всегда точное, а именно смесь должна воспламеняться именно тогда когда поршень вот вот достигнет «ВМТ». В связи с этими настройками, двигатель у автомобиля будет работать без перебойно и не будет тратить излишки топлива! Установка происходит за счёт мерцания лучей стробоскопа, которые будут в это время направлены на две метки одна из которых подвижная, а другая из которых неподвижная метка. Далее в действия включается принцип стробоскопического эффекта, то есть под мерцание лучей стробоскопа, подвижная метка вам должна будет казаться неподвижной. Если же метка постепенно смещается, это означает то что момент зажигания вашего двигателя неисправен! А после того как машина будет заведена стробоскоп сам начнёт свою работу, а вам в это время нужно будет лишь поднести его к меткам. Время работы стробоскопа: Большая часть стробоскопов могут непрерывно работать всего лишь около 5-10 мин. Всё это связано с тем, то что лампы которые встраиваются в стробоскоп могут работать только в таком режиме. После длительной работы стробоскопической лампе необходимо остыть, примерно столько же по времени сколько стробоскоп и работал. Более подробно должно быть указано в инструкции, которая должна выдаваться при покупке нового стробоскопа. Здравствуйте можете поподробнее объяснить как работает стробоскоп на автономном питании. Если что заранее спасибо. Он работает точно так же как и стробоскоп питающийся от аккумуляторной батареи автомобиля. Просто от стробоскопа на автономном питании, как было уже отмечено в статье не идут провода на аккумулятор, а лишь идет один единственный провод его еще называют датчиком, за счет которого стробоскоп и работает в нужном режиме! Посмотрите «», на нем вы увидите стробоскоп который питается за счет батареек, то есть на автономном питании.

В общем оказалось, что это стенд компьютерной диагностики ДВС.

Карта сайта Все права защищены.
При использовании материалов сайта ссылка на isle-crete.ru обязательна!

Автомобильный стробоскоп - А

Автомобильный стробоскоп

Автомобилистам хорошо известно, насколько важна правильная ус­тановка начального момента зажигания, а также исправная работа центро­бежного и вакуумного регуляторов опережения зажигания. Неправильная установка момента зажигания всего на 2 — 3° и неисправности регуляторов могут явиться причиной повышенного расхода топлива, перегрева двигателя, потери мощности и могут даже сократить срок службы двигателя.

Однако проверка и регулировка системы зажигания являются довольно сложными операциями, которые не всегда доступны даже опытному автолю­бителю.

Автомобильный стробоскоп позволяет упростить обслуживание системы зажигания. С его помощью, даже малоопытный автолюбитель может в тече­ние 5 — 10 мин проверить и отрегулировать начальную установку момента за­жигания, а также проверить исправность центробежного и вакуумного регу­ляторов опережения.

Стробоскоп может быть использован также в качестве преобразователя постоянного напряжения аккумулятора 12 В постоянное напряжение 110 — 127 В для питания коллекторной электробритвы постоянного тока.

Основным элементом прибора является импульсная безынерционная стро­боскопическая лампа H1 типа СШ-5, вспышки которой происходят в моменты появления искры в свече первого цилиндра двигателя. Вследствие этого уста­новочные метки, нанесенные на маховике или шкиве коленчатого вала, а так­же другие детали двигателя, вращающиеся или перемещающиеся синхронно с коленчатым валом, при освещении их стробоскопической лампой кажутся не­подвижными. Это позволяет наблюдать сдвиг между моментом зажигания и моментом прохождения поршнем верхней мертвой точки на всех режимах ра­боты двигателя, т. е. контролировать правильность установки начального мо­мента зажигания и проверять работоспособность центробежного и вакуумно­го регуляторов опережения зажигания.

Электрическая принципиальная схема автомобильного стробоскопа при­ведена на рис. 39. Прибор состоит из двухтактного преобразователя напря­жения на транзисторах VI, V2, выпрямителя, состоящего из выпрямительно­го блока V3 и конденсатор С1, ограничивающих резисторов R5, R6, накопи­тельных конденсаторов С2, СЗ, стробоскопической лампы HI, цепи поджига дампы, состоящей из конденсаторов С4, С5 и разрядника F1, защитного дио­да V4 и переключателя S1 режима работы «бритва» или «стробоскоп».

Рис. 39. Электрическая схема автомобильного стробоскопа на германиевых транзисторах


Прибор работает следующим образом. После подключения выводов Х5, Х6 к аккумулятору начинает работать преобразователь напряжения, представ­ляющий собой симметричный мультивибратор. Первоначальное открывающее напряжение на базы транзисторов VI, V2 преобразователя подается с делите­лей R2 — Rl, R4 — R3. Транзисторы VI, V2 начинают открываться, причем один из них обязательно быстрее. Это закрывает другой транзистор, так как к его базе при этом с обмотки w2 или w3 будет прикладываться запирающее (по­ложительное) напряжение. Затем транзисторы VI, V2 поочередно открывают­ся, подключая то одну, то другую половины обмотки wl трансформатора Tl. к аккумулятору. Во вторичных обмотках w4, w5 при этом индуцируется пе­ременное напряжение прямоугольной формы с частотой около 800 Гц, значе­ние которого пропорционально количеству витков обмоток.

Переменное напряжение с обмотки w4 через размыкающие контакты пе­реключателя S1, показанные на рис. 39 в положении «Бритва», поступает к выпрямительному блоку V3, выпрямляется и заряжает конденсатор С1 до на­пряжения 120 — 130 В (конденсаторы С2, СЗ при этом тоже заряжаются че­рез резисторы R5, R6 до этого напряжения). Напряжение с конденсатора С1 поступает к гнездам ХЗ, Х4 для подключения электробритвы.

При положении переключателя S1 «Стробоскоп» к выпрямительному блоку поступает суммарное напряжение с обмоток w4, w5, и конденсаторы С1 — СЗ заряжаются до напряжения 420 — 450 В.

В момент искрообразования в первом цилиндре двигателя высоковольт­ный импульс от гнезда распределителя через специальную вилку Х2 разряд­ника и конденсаторы С4, С5 поступает на поджигающие электроды стробо­скопической лампы HI. Лампа зажигается, и накопительные конденсаторы С2, СЗ разряжаются через нее. При этом энергия, накопленная в конденсаторах С2, СЗ, преобразуется в световую энергию вспышки лампы. После разряда кон­денсаторов С2, СЗ лампа HI гаснет, и конденсаторы снова заряжаются через резисторы R5, R6 до напряжения 420 — 450 В. Тем самым заканчивается под­готовка схемы к следующей вспышке.

Резисторы R5, R6 предотвращают закорачивание обмоток w4, w5 транс­форматора в момент вспышки лампы. Диод V4 защищает транзисторы преоб­разователя при случайном подключении стробоскопа в ошибочной полярности.

Разрядник F1, включенный между распределителем и свечей зажигания, обеспечивает необходимое напряжение высоковольтного импульса для поджи-га лампы вне зависимости от расстояния между электродами свечи, давления в камере сгорания и других факторов. Благодаря разряднику обеспечивается бесперебойная работа стробоскопа даже при закороченных электродах свечи зажигания.

Конструкция и детали. Конструкция стробоскопа может быть произволь­ной. Он может быть собран в одной упаковке или в двух. Необходимо толь­ко чтобы им было удобно работать, чтобы его удобно было держать в руках при освещении установочных меток на автомобиле и чтобы была обеспечена хорошая фокусировка луча. Например, стробоскоп может быть выполнен в одной упаковке в виде пистолета, как стробоскоп СТБ-1, выпускаемый про­мышленностью [5], с фокусировкой луча с помощью линзы.

Стробоскоп можно также собрать в двух упаковках, например, преобра­зователь в одной упаковке, а стробоскопическую лампу с накопительными конденсаторами С2, СЗ и конденсаторами поджига С4, С5 в другой, снаб­див лампу рефлектором или линзой.

Разрядник F1 размещают в любом случае в отдельном корпусе из орг­стекла, который должен иметь вилку Х2 для подключения к гнезду распреде­лителя и гнездо XI для подключения провода свечи зажигания, вынутого из гнезда распределителя. Расстояние между электродами разрядника 3 — 4 мм. Электроды разрядника выполняют из стальных или латунных прутков, заост­ренных на концах. Со стробоскопом корпус разрядника соединяют высоко­вольтным проводом ПВС длиной 0,7 — 1,0 м.

Конденсаторы С4, С5 представляют собой латунные трубки длиной около 60 мм, надетые на изоляцию провода ПВС внутри корпуса стробоскопа око­ло лампы. К каждой трубке припаивают провод МГТФ, соединяющий ее с. соответствующим выводом (1, 6) ламповой панели. Снаружи трубки изолиру­ют изоляционной лентой. Кроме того, на торец провода ПВС, входящего в стробоскоп, надевают изоляционный колпачок, который вытачивают из орг­стекла или фторопласта.

Подключение к аккумулятору (выводы Х5, Х6) производят с помощью пружинных зажимов «крокодил».

В стробоскопе применены резисторы типа МЛТ и конденсаторы типа МБМ с рабочим напряжением 500 В.

Трасформатор намотан проводом ПЭВ-2 на тороидальном сердечнике ОЛ20/32-8 из стальной ленты ЭЗЗО (Э340) толщиной 0,08 мм. Обмотка wl имеет 50+50 витков .провода диаметром, 0,51 мм, w2 и w3 по 10 витков, w4 — 550 витков провода диаметром 0,19 мм, a w5 — 1450 витков провода ди­аметром 0,1 мм. В качестве S1 применен переключатель типа ТЗ. Ламповая панель керамическая типа ПЛК-9.

При отсутствии выпрямительного блока КЦ402А вместо него могут быть применены четыре диода типа КД209В. Транзисторы П214А должны быть установлены на радиатор, от площади поверхности которого зависит время непрерывной работы стробоскопа. При отсутствии транзисторов П214А вместо-них могут быть применены германиевые транзисторы П215, П216Д, П217, П217А-Г. При этом, однако, может потребоваться несколько уменьшить соп­ротивление резисторов R2, R4.

В случае замены германиевых транзисторов П214А кремниевыми типг КТ837Д(Е) схема преобразователя, да и всего стробоскопа, должна быть существенно изменена. Изменяются данные трансформатора и выдвигаются дополнительные требования к его исполнению. Это связано с тем, что кремни­евые транзисторы серии КТ837 более высокочастотны и схема, выполненная на них, склонна к возбуждению. Кроме того, чтобы открыть эти транзисторы. нужно большее напряжение, чем для германиевых транзисторов. Так, напри­мер, если в стробоскоп, собранный по схеме рис. 39, впаять вместо транзисто­ров П214А, например, транзисторы КТ837Д, ничего не изменяя, преобразова-тель работать не будет, оба транзистора будут закрыты. Для того чтобы пре­образователь начал работать, сопротивления резисторов R2, R4 надо умень­шить до 200 — 300 Ом. При этом снижается коэффициент полезного действия преобразователя, а главное, он без каких-либо видимых причин может начать генерировать высокочастотные синусоидальные колебания с частотой 50 — 100 кГц.

Мощность, рассеиваемая в транзисторах, резко возрастает, и транзисторы через несколько минут выходят из строя.

На рис. 40 приведена электрическая принципиальная схема автомобильно­го стробоскопа на кремниевых транзисторах КТ837Д. Мощность, рассеиваемая в транзисторах преобразователя, в данном случае значительно меньше благо­даря большему быстродействию транзисторов КТ837Д, и следовательнв, боль­шей крутизне фронтов импульсов преобразователя; выше и надежность пре­образователя. Рассмотрим особенности этой схемы. Конденсаторы Cl, C7. включенные между «базами транзисторов преобразователя и минусом источника питания, предотвращают возникновение высокочастотной генерации.

Начальное отпирающее смещение на базы транзисторов V6, V7 подается с достаточно высокоомных делителей напряжения R3, R2, Rl, R9, R10, R11 и суммарным сопротивлением около 1000 Ом, нижние плечи которых имеют со­противление 100 Ом (коэффициент деления 1/10). Однако благодаря диодам V5, V10 базовый ток транзисторов от обмоток wl, w3 протекает через низ­коомные резисторы Rl, R11 (10 Ом). Таким образом, удается выполнить два противоречивых требования: получить высокоомный делитель для начальной смещения при низкоомном резисторе в цепи тока базы.

Цепи С2, R5 и СЗ, R4 уменьшают до допустимого уровня выбросы напря­жения, возникающие при закрывании транзисторов V6, V8, являющиеся след­ствием их чрезмерного быстродействия, Значения С2, СЗ, R4, R5 подбираются экспериментально для каждой конкретной конструкции трансформатора Т1. Резистор R8 обеспечивает разряд конденсаторов С4, С5, С6 в промежут­ках между этими выбросами, благодаря чему напряжение на конденсаторах яри остановленном двигателе не превышает нормы. Диоды V7, V9-устраняют обратные выбросы тока коллектора транзисторов V6, V8 в моменты их закрывания. Без этих диодов амплитуда обратного выброса тока достигает 2 А. Кроме того, эти диоды защищают транзисторы V6, V8 в случае ошибочной полярности подключения стробоскопа.


Рис. 40. Электрическая схема автомобильного стробоскопа на кремниевых транзисторах

Трансформатор Т1 в стробоскопе с кремниевыми транзисторами имеет следующие данные: магнитопровод (два кольца ОЛ-20/32-10) из стальной лен­ты ЭЗЗО (Э340) толщиной 0,08 мм; обмотки наматывают проводом ПЭВ-2. Обмотка wl имеет 30+30 витков, обмотки w2 и w3 по 11 витков провода диаметром 0,51 мм, причем эти обмотки наматывают первыми в последова­тельности w2, wl, w3 и обязательно в один слой. Обмотка w4 имеет 390 вит­ков провода диаметром 0,19 мм, а обмотка w5 — 815 витков провода диамет­ром. 0,1 мм.

Преобразователь с таким трансформатором работает с частотой около 500 Гц.

Следует отметить, что от конструкции трансформатора в большой степе­ни зависит устойчивость работы преобразователя и величина выбросов напряжения на коллекторах транзисторов. При другой конструкции трансформатора выбросы могут возрасти до недопустимо больших величин.

В стробоскопе применены конденсаторы С1, С7 типа БМ-2 на рабочее напряжение 200 В, однако могут быть применены и другие типы конденсато­ров с рабочими напряжениями не менее 50 В.

Как видно из схемы рис. 40, вместо выпрямительного блока КЦ402А применены более высоковольтные диоды КД209В. Это сделано для повыше­ния надежности и связано с наличием выбросов напряжения в обмотках трансформатора.

Требования к конструкции стробоскопа на кремниевых транзисторах ничем не отличается от аналогичных требований, предъявляемых к стробоскопу на германиевых транзисторах, за исключением того, что в результате меньшей мощности, рассеиваемой в транзисторах, площадь радиаторов охлаждения может быть значительно уменьшена (в данном случае каждый транзистор должен иметь свой, отдельный радиатор).

При отсутствии лампы СШ-5 может быть применена лампа ИФК-120,-однако конструкция стробоскопа при этом должна быть соответственно изме­нена. В электрическую схему прибора также необходимо внести изменения: из нее исключают конденсаторы поджига и провод ПВ.С подключают непо­средственно к поджигающему электроду лампы.

Срок службы лампы ИФК-120 значительно меньше, чем СШ-5, поэтому при применении лампы ИФК-120 для увеличения срока службы прибора це­лесообразно в цепь питания преобразователя ввести кнопку с замыкающим» контактами, рассчитанную на ток не менее 1 А. Зто исключит бесполезные вспышки лампы в процессе подготовки к работе после запуска двигателя. Вариант конструкции стробоскопа с лампой СШ-5 показан на рис. 41.

Работа с прибором. Прибор подключают к зажимам аккумулятора с по­мощью пружинных зажимов «крокодил» при остановленном двигателе. Подключение с ошибочной полярностью не опасно: прибор просто не будет ра­ботать. При правильном подключении должен быть слышен характерный «писк» трансформатора с частотой около 800 Гц.

При пользовании электробритвой последнюю подключают к гнездам ХЗ, Х4, предварительно установив переключатель S1 в положение «Бритва».

При регулировании и контроле системы зажигания из гнезда крышки рас­пределителя вынимают высоковольтный провод, идущий к свече первого ци­линдра, и вставляют его в гнездо XI корпуса разрядника F1. Специальную вилку Х2 корпуса разрядника вставляют в освободившееся гнездо крышки распределителя. Переключатель S1 устанавливают в положение «Стробоскоп». Далее запускают двигатель и мигающий луч стробоскопа направляют на ус­тановочные метки на шкиве или маховике коленчатого вала двигателя.


Рис. 41. Вариант конструкции автомобильного стробоскопа Автомобильный тахометр

Автомобильный тахометр предназначен для измерения числа оборо­тов коленчатого вала карбюраторных двигателей внутреннего сгорания. Та­хометр может быть полезен при регулировке и проверке двигателя, регулиров­ке и проверке автомобильных регуляторов напряжения, а также для контроля режима работы двигателя во время движения автомобиля. В последнем слу­чае тахометр устанавливают на приборном щитке в поле зрения водителя. Питание прибора производится от бортовой электросети автомобиля с номи- нальньш напряжением 12 В. Потребляемый тахометром ток не превышает 0,1 А.

Электрическая принципиальная схема прибора (рис. 42) состоит из жду­щего мультивибратора на транзисторах V2, V3, стабилизатора напряжения на стабилитроне V4 и микроамперметра РА1.


Рис. 42. Электрическая принципиальная схема автомобильного тахометра

В исходном состоянии диод VI и транзистор V2 открыты, транзистор V3 закрыт, ток через микроамперметр не течет и конденсатор С2 заряжен до на­пряжения стабилизации стабилитрона V4.

При подаче от системы зажигания двигателя на зажим XI прибора от­рицательного электрического импульса диод VI и транзистор V2 запираются, а транзистор V3 открывается. Конденсатор С2 начинает перезаряжаться через резистор R3 и открытый транзистор V3. Когда напряжение на аноде диода VI достигает примерно +1,2 В, диод VI и транзистор V2 открываются, тран­зистор V3 закрывается и ток через микроамперметр РА1 прекращается.

Таким образом, каждый отрицательный импульс, поступивший на вход прибора от системы зажигания, вызывает фиксированный по амплитуде и дли­тельности импульс тока через микроамперметр РА1. Длительность этого им­пульса определяется постоянной времени R3, С2, а амплитуда — напряжением стабилизации стабилитрона V4 и сопротивлениями резисторов R7, R8. В ре­зультате показания прибора РА1 оказываются пропорциональными частоте искрообразования в системе зажигания двигателя или числу оборотов его ко­ленчатого вала.

Конструкция и детали. В приборе применены: переменный резистор R8 типа СП5-1А; постоянные резисторы типа, МЛТ; электролитические конденса­торы типа К50-16 в рабочим напряжением 16 В; конденсатор С1КМ-ЗА, С2-КМ-5; микроамперметр РА1 типа М4200 на 100 мкА. Могут быть приме­нены также конденсаторы других типов: С1 на рабочее напряжение не менее 200 В, С2 — С4 — 15 В, СЗ — 6 В. Микроамперметр РА1 также может быть другого типа на ток до 500 мкА, при этом может понадобиться увеличить ем­кость конденсатора С2.

Транзисторы КТ315А могут быть заменены любыми другими маломощ­ными кремниевыми транзисторами типа n-р-n. Например КТ315, КТ342, КТ3102, МП101, МШИ и т. д. с любым буквенным индексом. Диод Д223 мо­жет быть заменен на Д219, Д220. Стабилитрон Д814А — на Д814Б, Д808, Д809.


Рис. 43. Вариант конструкции автомобильного тахометра

На рис. 43 показан вариант конструкции автомобильного тахометра. Все элементы прибора размещены на печатной плате из фольгированного стекло­текстолита, закрепленной на выводных зажимах микроамперметра. Микроам­перметр вместе с печатной платой вставлен в стальную коробку 2 с крышкой 3 — корпус прибора. Через отверстия в корпусе, снабженные резиновыми втулками, выведены провода для внешних подсоединений. Провода снабжены зажимами «крокодил» с гравировками в соответствии с обозначениями на рис. 42. Масса прибора 400 г, габаритные размеры 110X100X60 мм.

Градуировка прибора. Для градуировки прибора необходим источник пи­тания постоянного тока с напряжением 12 В и током 150 — 200 мА и генера­тор импульсов с частотой следования от 20 до 200 Гц и амплитудой не ме­нее 20 В, например типа Г5-54. Сопротивление резистора R8 первоначально устанавливают максимальным. При включенном питании и отсутствии сигна­ла от генератора стрелка микроамперметра должна находиться на нулевом делении шкалы (транзистор V3 закрыт).

Частоту градуировки F рассчитывают по формуле

где n — точка градуировки по шкале прибора, об/мин; Nц — число цилиндров;

Кт — количество тактов двигателя (два или четыре).

Например, для четырехцилиндрового четырехтактного двигателя частота Градуировки точки шкалы, соответствующей 6000 об/мин, равна 200 Гц.

Шкала прибора линейна, поэтому градуировку можно производить по од­ной точке, соответствующей, например, максимальному числу оборотов, одна­ко промежуточные точки шкалы также следует проверить.

Работа с прибором. Подключение прибора производят при остановлен­ном двигателе. Зажим « — » соединяют с корпусом автомобиля, зажим «+» — с положительным зажимом аккумулятора, а зажим XI надевают на изоляцию высоковольтного провода, идущего к распределителю от катушки зажигания (центральный высоковольтный провод). Запускают двигатель и по шкале при­бора отсчитывают число оборотов коленчатого вала в минуту.

Реле блокировки стартера

Реле блокировки стартера предназначено для применения на автомо­билях «Жигули». Оно служит для предотвращения включения стартера при работающем двигателе и разгрузки контактов замка зажигания от экстрато­ков тягового реле стартера, возникающих в момент его включения.

Двигатель автомобилей «Жигули» работает относительно тихо. Поэтому иногда при движении в потоке машин, когда окружающий шум сильнее, чем шум собственного двигателя, водитель может подумать, что двигатель заглох, и включить стартер. Раздастся неприятный скрежет шестерен, сообща­ющий водителю, что двигатель работает. Такие случаи, наверняка, бывали с каждым водителем. Включение стартера при работающем двигателе вызы­вает повышенный износ деталей привода и может привести даже к их по­ломке.

Кроме того, тяговое реле стартера автомобиля, потребляя ток около 30 А и обладая значительной индуктивностью создает при его выключении на контактах замка зажигания сильное искрение, которое приводит к обгоранию контактов и в конце концов к выходу их из строя.

Описываемое реле блокировки стартера устраняет указанные недостатки; Оно исключает возможность включения стартера при работающем двигателе­и устраняет искрение на контактах замка зажигания.

Применение реле блокировки стартера увеличивает срок службы контак­тов замка зажигания и деталей привода стартера.

Электрическая принципиальная схема реле блокировки стартера для под­ключения на автомобиле «Жигули» приведена на рис. 44.Основным элементом­реле является тиристор VI, включенный в цепь обмотки тягового реле стар­тера. Управляющим сигналом для работы реле блокировки стартера служит­положительное напряжение, поступающее от реле РС702 включения контроль­ной лампы заряда аккумулятора.

Рис. 44. Электрическая принципиальная схема реле блокировки стартера с це­пями подключения на автомобиле «Жигули»


Реле блокировки стартера работает следующим образом. При неработа­ющем двигателе и включенном зажигании выключателем ВЗ положительное-напряжение от аккумулятора GB через предохранитель F1, замкнутые кон­такты К1.1 реле РС702 включения контрольной лампы заряда аккумулятора, штекер-переходник Х2 поступает к контрольной лампе HI заряда аккумуля­тора и через резистор R1 к управляющему электроду тиристора VI. Поэтому при включении стартера выключателем ВСт тиристор VI включается, и на­пряжение аккумулятора поступает к обмотке wl тягового реле стартера. включая стартер.

После запуска двигателя контакты К11 реле РС702 размыкаются, лам­па HI гаснет ,и положительное напряжение снижается с управляющего элек­трода тиристора V1. Поэтому, если теперь замкнуть контакты выключателя стартера, тиристор V1 останется в выключенном состоянии, и напряжение на обмотку wl тягового реле стартера не попадет.

Резистор R1 ограничивает ток управляющего электрода тиристора VI, а резистор R2 предотвращает его самопроизвольное переключение. Через диод V2 замыкаются экстратоки обмотки тягового реле стартера, возникающие при раз­мыкании контактов выключателя стартера.

Конструкция и детали. К конструкции реле блокировки стартера предъяв­ляются следующие требования. Тиристор V1 должен быть установлен на ра­диаторе, изготовленном из алюминиевого сплава с массой не менее 40 г. В данном случае важна именно масса радиатора, а не площадь его поверхности. Это связано с кратковременностью рабочих циклов и длительными промежут­ками между ними. Необходимо, чтобы за время рабочего цикла (за время работы стартера) радиатор не успел нагреться. Электрически радиатор должен быть изолирован от массы.

Для облегчения установки на автомобиль выводы XI, ХЗ реле следует -снабдить стандартными автомобильными вставками разъемов (XI — штырь, ХЗ — гнездо), а вывод Х2 — штекером-переходником, содержащим одновремен­но штырь и гнездо.

Кроме того, желательно, чтобы при установке прибора на автомобиле не тадо было сверлить дополнительных отверстий. Для этого корпус прибора должен иметь две длинные лапки с отверстиями диаметром 6 мм и рассто­янием между их центрами 60 мм. В этом случае прибор можно будет за­крепить винтами, крепящими штатные автомобильные реле, например PC 752, вместе с ним. Ну и, конечно, конструкция должна быть брызгозащищенвой.

Вместо тиристора Т10-25 и диода Д242 могут быть применены другие аналогичные приборы. Тиристор должен быть рассчитан на ток не менее 25 А, а диод на 5 — 10 А.

На рис. 45 показан вариант конструкции реле блокировки стартера, ко­торый удовлетворяет всем перечисленным требованиям.

Основание 1 выполнено из алюминиевого сплава фрезерованием и имеет две лапки с отверстиями диаметром 6 мм для крепления на автомобиле и приливы для крепления элементов прибора и радиатора 2. Сверху основание закрывается крышкой 3, которую закрепляют винтом, устанавливаемым в прилив основания. Провода длиной 280 мм выводятся через резиновый уплотнитель. Оканчивают провода стандартными автомобильными штекерами и штекером-переходником.

Установка на автомобиле. На автомобиле реле блокировки стартера уста­навливают на брызговике правого крыла в подкапотном пространстве рядом с реле РС702 включения контрольной лампы заряда аккумулятора и прово­дом, идущим от замка зажигания к тяговому реле стартера (толстый красный провод в нижней части брызговика). Разъединяют разъем этого провода и его штекеры подключают к штекерам XI, ХЗ реле блокировки стартера.


Рис. 45. Вариант конструкции реле блокировки стартера

Со штыря 30/51 реле РС702 снимают гнездо черного провода, идущего к контрольной лампе заряда аккумулятора, и надевают на штырь штекера-пере­ходника Х2, гнездо которого надевают на освободившийся штырь 30/51 реле РС702. Корпус реле блокировки стартера должен иметь хороший электриче­ский контакт с массой автомобиля.

После установки реле блокировки стартера, если оно исправно, двигатель должен нормально запускаться стартером, однако при повороте ключа зажи­гания в положение запуска стартером во время работы двигателя стартер не должен включаться.

В заключение следует отметить, что если на автомобиле с установленным реле блокировки стартер перестает работать, необходимо в первую очередь проверить исправность предохранителя № 9 (F1 на рис. 44). Через этот предо­хранитель поступает питание к контактам реле РС702 и управляющему элек­троду тиристора VI реле блокировки стартера.


1. Основы электрооборудования самолетов и автомашин/В. Н. Акимов, Б. П. Апаров, В. А. Балагуров и др.; Под ред. А. Н. Ларионова. — М. Госэнергоиздат, 1955. — 384 с.

2. Глезер Г. Н. Опарин И. М. Автомобильные электронные системы за!жига-ния. — М. Машиностроение, 1977. — 144 с.

3. Моргулев А. С, Сонин Е. К. Полупроводниковые системы зажигания. — М: Энергия, 1972. — 80 с.

4. Синельников А. X. Электроника в автомобиле. 2-е изд. перераб. и доп. —. М. Энергия, 1976. — 80 с.

5. Синельников А. X. Электронные приборы для автомобилей — М. Энергоиз-дат, 1981. — 162 с.

6. Ванеев А. И. Влияние искрового разряда в цилиндрах на пуск карбюратор­ного двигателя. — Автомобильная и тракторная промышленность, 1950, №3, с. 3 — 9.

7. Осипов Г. Яковлев Г. ВАЗ 2105. Система питания. — За рулем, 1980, № 12, с. 16.

8. Банников В. Янковский А. Экономайзер для автомобильного двигателя. — Радио, 1982, № 11, с. 27 — 28.

9. Моисеевич А. ЭПХХ в работе. —. За рулем, 1983, № 7, с. 6 — 7.

10. Моисеевич А. Что дает ЭПХХ. — За рулем, 1983, № 6, с. 14 — 15.

11. Ильин Н. М. Тимофеев Ю. Л. Ваняев В. А. Электрооборудование автомо­билей. — М. Транспорт, 19718. — 58 с.

12. Бела Буна. Электроника на автомобиле: Пер. с венгер. — М. Транспорт, 1979. — 180 с.

13. Автомобильные электронные системы: Пер. с англ./Под ред. Ю. М. Галки­на — М. Машиностроение, 1982. — 144 с


Предисловие к третьему изданию

Применение электроники в системе зажигания карбюраторных двигателей

Общие характеристики электронных систем зажигания

Принципы построения транзисторных систем зажигания

Принципы построения конденсаторных (тиристорных) систем зажи­гания

Конденсаторная система зажигания с импульсным накоплением энергии

Приставка к электронным блокам конденсаторной системы зажигания с импульсным накоплением энергии для увеличения длительности искрового разряда

Конденсаторная система зажигания с непрерывным накоплением энергии

Приставка к электронному блоку конденсаторной системы зажигания с непрерывным накоплением энергии для получения многократного новообразования

Применение электроники в электрооборудовании и вспомогательных при­борах автомобиля

Экономайзер принудительного холостого хода для автомобилей ВАЗ 2103, 2106, 2121

Электронный регулятор напряжения для автомобилей «Жигули»

Реле блокировки стартера

Б. Г. Белкин, С. А. Бирюков, В. М. Бондаренко, В. Г. Борисов, Ь. Н. Геништа, А. В. Гороховский, С. А. Ельяшкевич, И П Же­ребцов В. Г. Корольков, В. Т. Поляков, А. Д. Смирнов, Ф. И. Тарасов, О. П. Фролов, Ю. Л. Хотунцев, Н. И. Чистяков


РЕЦЕНЗЕНТ канд. техн. наук Я. Н. НЕФЕДЬЕВ


Синельников А. X.

С38 Электроника в автомобиле. — 3-е изд. перераб. и доп. — М. Радио и связь, 1985. — 96с, ил. — (Массо­вая радиобиблиотека; Вып. 1084). 55 к.


Подробно рассмотрены практические конструкции электронных систем и приборов для автомобиля: конденсаторных систем зажигания, регуля­торов напряжения, экономайзера принудительного холостого хода, проти­воугонных устройств, реле блокировки стартера, а также приборов для определения характеристик системы зажигания автомобиля.

По сравнению со вторым изданием (1976 г.) материал полностью обновлен.

Для радио- и автолюбителей.


2402020000 — 019 ББК 84.32


Александр Хананович Синельников


ЭЛЕКТРОНИКА В АВТОМОБИЛЕ


Редактор В. С. Темкин

Редактор издательства Я. Я. Суслова

Обложка художника Л. Г. Прохорова

Художественный редактор Н. С. Шеин

Технический редактор А. Н. Золотарева

Корректор Г. Г. Казакова


Сдано в набор 13.08.84 Подписано в печать 29.10.84

Т-21139 Формат 6OX90/16 Бумага тип. № 2 Гарнитура литературная Печать высокая Усл. печ. л. 6,0 Усл. кр.-отт. 6,375 Уч.-изд. л. 7,27 Тираж 130 000 экз. (1-й завод: 1 — 80 000 экз.) Изд. № 20568 Зак. 93 Цена 55 к.

Издательство «Радио и связь». 101000 Москва, Почтамт, а/я 693

Московская типография № 5 ВГО «Союзучетиздат» 101000 Москва, ул. Кирова, д. 40