Руководства, Инструкции, Бланки

типовая инструкция по эксплуатации генераторов на электростанциях img-1

типовая инструкция по эксплуатации генераторов на электростанциях

Рейтинг: 4.9/5.0 (1826 проголосовавших)

Категория: Инструкции

Описание

РД -88 Типовая инструкция по эксплуатации генераторов на электростанциях

Каталог документов NormaCS РД 34.45.501-88 Типовая инструкция по эксплуатации генераторов на электростанциях РД 34.45.501-88 Типовая инструкция по эксплуатации генераторов на электростанциях

Статус: Не действует
Синонимы: СО 153-34.45.501
Текст документа: присутствует в коммерческой версии NormaCS
Сканкопия официального издания документа: присутствует в коммерческой версии NormaCS
Страниц в документе: 121
Утвержден: Минэнерго СССР, 28.03.1988
Обозначение: РД 34.45.501-88
Наименование: Типовая инструкция по эксплуатации генераторов на электростанциях
Область применения: Указания настоящей инструкции обязательны для применения персоналом, обслуживающим вновь вводимые и действующие установки с генераторами мощностью 2500 кВт и более.
Комментарий: Исключен из Реестра действующих в электроэнергетике НТД приказом НП "ИНВЭЛ" № 101/1 от 31.12.2009 г. Действует СТО 70238424.29.160.20.007-2009 Турбогенераторы и синхронные компенсаторы. Организация эксплуатации и технического обслуживания. Нормы и требования.
Дополнительные сведения: доступны через сетевой клиент NormaCS. После установки нажмите на иконку рядом с названием документа для его открытия в NormaCS


Пожалуйста, дождитесь загрузки страницы.
Документ ссылается на:

    ГОСТ 10159-79 - Машины электрические вращающиеся коллекторные. Методы испытаний
    ГОСТ 10169-77 - Машины электрические трехфазные синхронные. Методы испытаний
    ГОСТ 11828-86 - Машины электрические вращающиеся. Общие методы испытаний
    ГОСТ 14202-69 - Трубопроводы промышленных предприятий. Опознавательная окраска, предупреждающие знаки и маркировочные щитки
    ГОСТ 183-74 - Машины электрические вращающиеся. Общие технические условия
    ГОСТ 2.601-68 - Единая система конструкторской документации. Эксплуатационные документы
    ГОСТ 2.603-68 - Единая система конструкторской документации. Внесение изменений в эксплуатационную и ремонтную документацию
    ГОСТ 2.609-79 - Единая система конструкторской документации. Порядок разработки, согласования и утверждения эксплуатационных и ремонтных документов
    ГОСТ 533-85 - Машины электрические вращающиеся. Турбогенераторы. Общие технические условия
    ГОСТ 5616-89 - Генераторы и генераторы-двигатели электрические гидротурбинные. Общие технические условия
    ПУЭ - Правила устройства электроустановок

На документ ссылаются:
    Приказ 101/1 - Об утверждении и введении в действие стандартов организации НП "ИНВЭЛ"
    Приказ 422 - О пересмотре нормативно-технических документов (НТД) и порядке их действия в соответствии с ФЗ "О техническом регулировании"
    СТО - Тепловые электрические станции. Методики оценки состояния основного оборудования
    СТО 17330282.27.140.001-2006 - Методики оценки технического состояния основного оборудования гидроэлектростанций
    СТО 70238424.27.140.001-2011 - Гидроэлектростанции. Методики оценки технического состояния основного оборудования

Другие статьи

РД -88

РД 34.45.501-88. Типовая инструкция по эксплуатации генераторов на электростанциях

Разработано Всесоюзным научно-исследовательским институтом электроэнергетики (ВНИИЭ).
Согласовано ЛПЭО "Электросила", заводом "Электротяжмаш" и ПО "Союзтехэнерго".
Утверждено Главным научно-техническим управлением энергетики и электрификации 28.03.88.
Срок действия установлен с 01.01.89 до 01.01.94.

Настоящая Типовая инструкция разработана с учетом опыта эксплуатации турбо- и гидрогенераторов на электростанциях и требований действующих "Правил технической эксплуатации", "Правил устройства электроустановок", а также других отраслевых нормативно-технических документов Минэнерго СССР.
С выходом настоящей Типовой инструкции отменяется "Типовая инструкция по эксплуатации генераторов на электростанциях" (М. СПО Союзтехэнерго, 1983).
Типовая инструкция является обязательной для персонала всех электростанций, предприятий и организаций Минэнерго СССР. По всем вопросам, не рассмотренным в данной Инструкции, эксплуатация генераторов должна осуществляться согласно указаниям заводов-изготовителей.
Требования настоящей Инструкции должны учитываться при разработке заводами-изготовителями эксплуатационных документов по ГОСТ 2.601-68 на все новые генераторы и при согласовании этих документов с Главным научно-техническим управлением энергетики и электрификации в соответствии с ГОСТ 2.609-79 и техническими условиями на поставку. При выполнении этого условия эксплуатация таких генераторов должна производиться по заводским инструкциям.
Указания настоящей Инструкции обязательны для применения персоналом, обслуживающим вновь вводимые и действующие установки с генераторами мощностью 2500 кВт и более.
Положения настоящей Инструкции должны по возможности учитываться также при эксплуатации генераторов меньшей мощности.

Введение.
Общие требования.
Режимы работы генераторов.
Надзор и уход за генераторами.
Неисправности генераторов.
Испытания генераторов.
Сушка генераторов.
Общие указания по составлению местной производственной инструкции по эксплуатации генераторов.
Приложения:
Снижение влажности водорода в турбогенераторах.
Рекомендации по хранению и испытаниям резервных стержней обмоток генераторов и синхронных компенсаторов, а также хранению резинотехнических уплотнительных изделий.
Значения увеличенной мощности генераторов с косвенным охлаждением обмоток водорода при увеличении избыточного давления водорода свыше номинального.
Использование генераторов для работы в режиме синхронного компенсатора.
Указания по проведению испытаний турбогенераторов в асинхронном режиме.
Проверка чередования фаз и синхронизационного устройства генераторов.
Газовый объем турбогенераторов с водородным охлаждением (с вставленным ротором).
О ликвидации несимметричных режимов блоков при неполнофазных отключениях и включениях выключателей.
Перевод возбуждения работающего турбогенератора с основного возбудителя на резервный и обратно.
О допустимости эксплуатации генераторов при выходе из строя части термометров сопротивления.
О недопустимости работы турбогенераторов с непосредственным охлаждением обмоток при снижении сопротивления изоляции в цепях возбуждения.
Указания по испытанию стали сердечника статора
Указания по сушке генератора.

  • Чтобы скачать этот файл зарегистрируйтесь и/или войдите на сайт используя форму сверху.

Типовая инструкция по эксплуатации генераторов на электростанциях

Типовая инструкция по эксплуатации генераторов на электростанциях (далее Инструкция) является обязательной для персонала всех электростанций, предприятий и организаций Минэнерго СССР. По всем вопросам, не рассмотренным в данной Инструкции, эксплуатация генераторов должна осуществляться согласно указаниям заводов-изготовителей.

Требования настоящей Инструкции должны учитываться при разработке заводами-изготовителями эксплуатационных документов1 по ГОСТ 2.601-68 на все новые генераторы и при согласовании этих документов с Главным научно-техническим управлением энергетики и электрификации в соответствии с ГОСТ 2.609-79 и техническими условиями на поставку. При выполнении этого условия эксплуатация таких генераторов должна производиться по заводским инструкциям 2.

1 Далее - заводские инструкции.

2 Допускается эксплуатация первых головных (опытно-промышленных) образцов генераторов по временной заводской инструкции в течение года до ее отработки и согласования с Главтехуправлением.

Внесение изменений в настоящую Инструкцию и в заводские инструкции по эксплуатации конкретных типов генераторов на основании соответствующих предложений электростанций, предприятий или заинтересованных организаций осуществляется совместным решением Главтехуправления Минэнерго СССР и завода-изготовителя.

Сведения о внесенных изменениях (ГОСТ 2.603-68 ) должны публиковаться в виде решений и циркуляров Главтехуправления Минэнерго СССР.

1. ОБЩИЕ ТРЕБОВАНИЯ

1.1. Указания настоящей Инструкции обязательны для применения персоналом, обслуживавшим вновь вводимые и действующие установки с генераторами мощностью 2500 кВт и более.

Положения настоящей Инструкции должны по возможности учитываться также при эксплуатации генераторов меньшей мощности.

1.2. Каждый генератор должен иметь на корпусе порядковый станционный номер. Если генератор имеет несколько одинаковых вспомогательных агрегатов или другое оборудование, то каждый из них должен иметь тот же номер, что и генератор, с добавлением индекса А, Б и т.д.

1.3. Каждый генератор, возбудитель и охладитель (газоохладитель и теплообменник) должны иметь щиток с номинальными данными.

1.4. Генераторы должны быть оборудованы необходимыми контрольно-измерительными приборами, устройствами управления и сигнализации, средствами защиты в соответствии с действующими ПУЭ.

Для контроля за перегрузкой генератора один из трех амперметров, установленных в цепи статора, должен иметь шкалу, рассчитанную на удвоенный номинальный ток для всех гидрогенераторов и турбогенераторов с косвенным охлаждением и на полуторный номинальный ток для турбогенераторов с непосредственным охлаждением обмотки статора. Для удобства контроля за режимом работы генератора значения номинальных токов статора и ротора должны быть указаны на шкале прибора.

Генераторы, используемые в режимах недовозбуждения, должны быть оборудованы приборами контроля потребляемой реактивной мощности.

Турбогенераторы мощностью 300 МВт и выше рекомендуется оборудовать приборами для определения температуры обмотки ротора с выводом на БЩУ предупредительного сигнала о превышении температуры.

1.5. На каждом генераторе должны быть устройства для контроля сопротивления изоляции цепей возбуждения во время их работы.

1.6. Автоматические регуляторы возбуждения (АРВ) со всеми устройствами, включая устройства форсировки возбуждения и ограничения максимального тока (по значению и длительности) и минимального тока ротора, должны быть постоянно включены в работу, и, как правило, не должны отключаться при останове и пуске генераторов. Отключение АРВ допускается только для его ремонта или ревизии.

Настройка и действие АРВ должны быть согласованы с работой общестанционных устройств автоматического регулирования напряжения и реактивной мощности. На электростанциях и в энергоуправлениях должны быть таблицы основных параметров настройки АРВ.

На резервных возбудителях генераторов допускается не устанавливать АРВ. Рекомендуется применять на них релейную форсировку возбуждения, обеспечивающую кратность не ниже 1,3 номинального напряжения ротора.

1.7. Устройства АРВ и форсировки рабочего возбуждения должны быть настроены так, чтобы при заданном понижении напряжения в сети были обеспечены:

предельное установившееся напряжение возбуждения не ниже двукратного в рабочем режиме (если это значение не ограничено государственным стандартом или техническим условием на поставку);

заданная государственным стандартом или техническим условием номинальная скорость нарастания напряжения возбуждения.

Для генераторов с непосредственным охлаждением обмотки ротора должно быть обеспечено автоматическое ограничение заданной длительности форсировки.

1.8. Генераторы должны вводиться в эксплуатацию на основном возбуждении.

В условиях эксплуатации оперативные переключения с основного возбуждения на резервное и обратно должны выполняться без отключения генераторов от сети (кроме генераторов с бесщеточными системами возбуждения).

1.9. На всех генераторах, снабженных дополнительным устройством гашения поля, воздействующим на возбудитель, гашение поля на отключенной от сети синхронной машине должно выполняться персоналом, как правило, с помощью этого устройства в целях уменьшения воздействия повышенного напряжения на обмотку возбуждения синхронной машины.

На всех генераторах с системами возбуждения на базе полупроводниковых преобразователей и на генераторах, оборудованных автоматами гашения поля с разрывом цепи ротора, должны быть установлены и постоянно находиться в работе специальные защиты обмоток ротора от перенапряжений (разрядник, нелинейный резистор и т.д.).

Запрещается производить гашение поля автоматами АГП-1 при токах, меньших 200 А.

1.10. Расположение ключей (кнопок) управления реостатом возбуждения и регулятором возбуждения, а также направление вращения маховичков приводов реостатов и регуляторов возбуждения в сторону увеличения возбуждения должно быть одинаково для всех генераторов данной электростанции.

На маховичковом приводе реостата возбуждения коллекторного возбудителя и на самом реостате должны быть нанесены красной краской отметки, соответствующие холостому ходу и полной нагрузке генератора, и стрелкой - направление вращения для увеличения возбуждения.

1.11. Командоаппарат, если он установлен на генераторе, должен быть оборудован светозвуковой сигнализацией и иметь необходимые надписи.

1.12. Все оборудование, обеспечивающее смазку поверхностей трения и охлаждение генератора (независимо от его типа и конструкции), установленное в соответствии с требованиями ПУЭ, должно находиться в работе.

1.13. Охлаждение обмоток статора и ротора генератора водой (дистиллятом) должно осуществляться по замкнутому циклу с теплообменниками. Расход, давление и качество охлаждающего дистиллята должны контролироваться средствами, предусмотренными ПУЭ.

1.14. Устройства теплового контроля генератора должны вводиться в работу в полном объеме с использованием всех рабочих функций (регистрация температур, сигнализация при достижении предельно допустимых температур и т.п.).

Если устройства теплового контроля имеют две уставки сигнализации по температуре, то при наличии соответствующих указаний заводских инструкций должны быть введены в работу обе уставки.

Помимо устройств дистанционного контроля за температурой газа в генераторе, необходимо установить термометры расширения в предназначенные для них карманы в корпусе генератора (если это предусмотрено конструкцией генератора).

1.15. Осушитель газа турбогенератора с водородным охлаждением должен быть подключен таким образом, чтобы он работал при полном напоре вентилятора. Место установки осушителя выбирается из условий удобства обслуживания и достаточной вентиляции. При этом нельзя допускать образования взрывоопасной смеси, когда оставшийся в осушителе водород выпускается в машинный зал или имеется утечка водорода из осушителя. Вместо сорбционно-силикагелевых осушителей рекомендуется применять холодильные установки (приложение 1).

1.16. У некоторых типов генераторов циркуляция воды в газоохладителях осуществляется по замкнутому циклу с установкой промежуточных теплообменников. При этом для тех генераторов, нормальная работа которых не допускается при температуре воды на входе в газоохладители выше 33 °С (генераторы ТВВ), должны быть предусмотрены возможность перехода на разомкнутый цикл и выполнение мероприятий в соответствии с п. 6.6 «Сборника директивных материалов Главтехуправления Минэнерго СССР» (М. Энергоатомиздат, 1985).

1.17. Вновь устанавливаемые турбогенераторы с водородным охлаждением должны вводиться в эксплуатацию при номинальном давлении водорода. При этом должно быть обеспечено автоматическое управление работой системы маслоснабжения уплотнений вала.

1.18. Резервные источники маслоснабжения уплотнений генераторов с водородным охлаждением должны автоматически включаться в работу при отключении рабочего источника и при снижении давления масла ниже установленного предела.

Для резервирования основных источников маслоснабжения уплотнений генераторов мощностью 60 МВт и более должны быть постоянно включены демпферные (буферные) баки с постоянной циркуляцией масла.

1.19. В системе маслоснабжения уплотнений вала турбогенераторов должны быть постоянно включены в работу регуляторы давления масла (уплотняющего, прижимного, компенсирующего).

Контроль за давлением масла в уплотнениях должен производиться в непосредственной близости к напорным камерам уплотнений.

Маховики вентилей, установленных на маслопроводах системы масляных уплотнений вала генератора, должны быть опломбированы в рабочем положении.

1.20. Фильтры, установленные в системе подвода воды к воздухоохладителям, газоохладителям, теплообменникам для охлаждения генераторов, и фильтры в системе циркуляции дистиллята или масла должны постоянно находиться в работе.

1.21. Все газопроводы, маслопроводы и трубопроводы дистиллята, относящиеся к турбогенераторам с водородным и смешанным водородно-водяным охлаждением, должны иметь опознавательную окраску и предупреждающие знаки в соответствии с ГОСТ 14202-69 и «Типовой инструкцией по эксплуатации электролизных установок для получения водорода и кислорода» (М. СПО Союзтехэнерго, 1986).

1.22. Все вентили и краны в системах водородного и водяного охлаждения должны быть пронумерованы и на них должны быть указаны индексы: в масляной системе - «М», а при наличии вакуума - «ВК», в газовой системе, заполненной водородом - «В», заполненной углекислым газом - «У», заполненной азотом - «А», в системе водяного охлаждения обмоток статора - «Д». Индексы указываются перед номером вентиля и крана.

1.23. Для контактных колец должны применяться щетки одной марки на каждое кольцо или на оба кольца согласно заводской инструкции. Для коллектора возбудителя должны также применяться щетки одной марки. Давление щетки на кольцо или коллектор должно соответствовать государственным стандартам, техническим условиям и рекомендациям заводов-изготовителей машин.

На коллекторе возбудителя щетки должны быть установлены в шахматном порядке для обеспечения равномерного износа поверхности коллектора. Щетки каждой пары рядов (положительных и отрицательных) должны работать одна за другой по одному следу, а щетки следующей пары - по следу, сдвинутому относительно первого.

Эксплуатация щеточно-контактных аппаратов генераторов должна осуществляться в соответствии с инструкциями заводов-изготовителей и «Типовой инструкцией по эксплуатации узла контактных колец и щеточного аппарата турбогенераторов мощностью 165 МВт и выше» (М. СПО Союзтехэнерго, 1984).

1.24. Запасные части генераторов должны храниться в сухом помещении. Особенно бережно следует хранить стержни обмотки, уплотнительные резинотехнические изделия (приложение 2) и изоляционные материалы.

1.25. Запасные якоря коллекторных возбудителей турбогенераторов должны быть испытаны и подготовлены к работе; их коллекторы должны быть отшлифованы, промежутки между пластинами «продорожены». Запасной якорь возбудителя турбогенератора после отбалансировки должен быть установлен для опробования взамен рабочего якоря на срок не менее полугода.

1.26. Для каждого типа генератора на электростанции должны быть в наличии все приспособления и комплекты инструмента, необходимые для разборки и сборки генераторов во время ремонта и для снятия бандажей ротора. Приспособления для снятия и индукционного нагрева бандажей роторов турбогенераторов могут быть общими для нескольких электростанций одной энергосистемы, на которых установлены однотипные генераторы.

Типовая инструкция по эксплуатации газомасляной системы водородного охлаждения генераторов рд 153-34

РОССИЙСКОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО ЭНЕРГЕТИКИ И ЭЛЕКТРИФИКАЦИИ «ЕЭС РОССИИ»

ДЕПАРТАМЕНТ НАУКИ И ТЕХНИКИ

ТИПОВАЯ ИНСТРУКЦИЯ ПО ЭКСПЛУАТАЦИИ ГАЗОМАСЛЯНОЙ СИСТЕМЫ ВОДОРОДНОГО ОХЛАЖДЕНИЯ ГЕНЕРАТОРОВ

Вводится в действие с 01.12.98 г.

Разработано Открытым акционерным обществом "Фирма по наладке, совершенствованию технологии и эксплуатации электростанций и сетей ОРГРЭС"

Исполнители В.А. ВАЛИТОВ, В.М.ГУРЬЕВ

Утверждено Департаментом науки и техники РАО "ЕЭС России" 18.06.97 г.

Начальник электротехнического отдела К.М. АНТИПОВ

Согласовано с НИИ АО "Электросила" 14.05.97 г.

Заместитель директора Ю.А. ДЕГУСАРОВ

Директор по науке А.С. ПОСТНИКОВ

Настоящая Типовая инструкция распространяется на турбогенераторы с водородным охлаждением и содержит краткое описание современных конструкций уплотнений вала, систем их маслоснабжения и газовых схем, технические требования по обеспечению надежной и безопасной эксплуатации этих узлов и систем, указания по вводу и выводу систем из работы, их эксплуатации в нормальных и аварийных режимах, рекомендации по устранению неисправностей и организации физико-химического контроля газов.

В Типовой инструкции не рассматриваются вопросы эксплуатации систем маслоснабжения уплотнений вала турбогенераторов первых выпусков, которые были изложены в предыдущих инструкциях по эксплуатации газомасляных систем, изданных ОРГРЭС в 1965 и 1972 гг. а также особенности эксплуатации газомасляных схем генераторов с отодвигающимися вкладышами уплотнений и трехпоточными кольцевыми уплотнениями вала, не получившими широкого применения.

Типовая инструкция предназначена для персонала электростанций, осуществляющего оперативное обслуживание и ремонт газомасляных систем водородозаполненных турбогенераторов.

С выходом настоящей Типовой инструкции отменяется "Типовая инструкция по эксплуатации газовой системы водородного охлаждения генераторов: ТИ 34-70-065-87" (М: СПО Союзтехэнерго, 1987).

I. ЭКСПЛУАТАЦИЯ СИСТЕМЫ МАСЛОСНАБЖЕНИЯ УПЛОТНЕНИЙ ВАЛА 1. ПРИНЦИП ДЕЙСТВИЯ, ОСНОВНЫЕ ТИПЫ, ОСОБЕННОСТИ РАБОТЫ УПЛОТНЕНИЙ ВАЛА. СХЕМЫ ИХ МАСЛОСНАБЖЕНИЯ

1.1. В турбогенераторах с водородным охлаждением предотвращение утечки водорода в месте выхода вала ротора из корпуса генератора осуществляется посредством специальных масляных уплотнений вала, размещаемых между торцевыми щитами и опорными подшипниками.

Принцип действия уплотнений вала заключается в запирании водорода непрерывным встречным потоком масла, подаваемым в узкий зазор между валом ротора и вкладышем уплотнения под давлением, превышающим давление водорода. В зависимости от конструктивных особенностей уплотнений вала и их размеров значение перепада давлений масловодород находится в пределах 0,04?0,09 МПа (0,4?0,9 кгс/см 2 ). Номинальное значение перепада давлений устанавливается заводом-изготовителем, уточняется при наладке системы маслоснабжения и на работающем генераторе автоматически поддерживается неизменным специальной регулирующей аппаратурой (см. ниже).

Все известные конструкции уплотнений вала можно разбить на два основных типа - кольцевые и торцевые (рис. 1).

Рис. 1. Конструктивные схемы наиболее распространенных уплотнений вала:

а, б, в и г - торцевого типа: 1 - упорный диск; 2 - вкладыш; 3 - пружина; 4 - корпус уплотнения; Рy - давление уплотняющего масла; Рг -давление газа; Рпм - давление прижимающего масла; д, е, ж и з - кольцевого типа: 1 - вал ротора; 2 - вкладыш; 3 - корпус уплотнения; 4 - канавка отжимающего масла; 5 - большой вкладыш; 6 - малый вкладыш;

7 - крышка; Рк - давление компенсирующего масла; Н2 - сторона водорода

Уплотнение кольцевого типа представляет собой кольцевой вкладыш, охватывающий вал с малым зазором. В первых конструкциях кольцевых уплотнений вала (генераторы типа ТВ-50-2) вкладыш жестко крепился к опорному подшипнику. В последующем от такой конструкции отказались и перешли на размещение вкладыша внутри корпуса уплотнения, закрепляемого на торцевом щите. Вкладыш имеет свободу незначительного радиального перемещения внутри напорной камеры, образованной боковыми стенками вкладыша (рис. 1, д, генераторы типов ТВ2-100-2 и ТВ2-150-2), корпуса (рис. 1, e, разработка АО "ЦКБ Энергоремонт") или корпуса и крышки (рис. 1, ж, генераторы единой серии). Уплотнение напорных камер первоначально осуществлялось медными или пластикатовыми кольцами, а позднее - посредством резиновых шнуров. От проворачивания вкладыш удерживается специальной шпонкой (на рисунке не показана). Уплотняющее масло под давлением, превышающим давление водорода, поступает в напорную камеру, а затем через радиальные отверстия во вкладыше в кольцевой зазор между гладкой баббитовой поверхностью вкладыша и валом ротора. Разделившись на два аксиальных потока в сторону водорода и воздуха, уплотняющее масло отводит потери трения с рабочей поверхности вкладыша и предотвращает утечку водорода из корпуса генератора. В более поздних конструкциях кольцевых уплотнений на воздушной части расточки вкладыша стали предусматривать специальную клиновую разделку баббитовой поверхности, что позволило обеспечить в работе хорошую центровку и концентричность расположения вкладыша относительно вала.

В кольцевом уплотнении усилие прижатия вкладыша к валу создается только массой вкладыша. В простейшем кольцевом уплотнении с гладкой баббитовой поверхностью уравновешивание массы вкладыша радиальным усилием в масляном слое сопровождается некоторым эксцентриситетом в расположении кольца относительно вала.

При нарушении маслоснабжения кольцевое уплотнение, как правило, не повреждается. Это объясняется тем, что вкладыш, оседающий на вал при нарушении масляного клина в верхней зоне вкладыша, соприкасается с валом на незначительной площади и баббит не так быстро перегревается. Если усилие трения вкладыша в корпусе окажется больше массы вкладыша, то оседания вкладыша может и не быть. При исчезновении масляного слоя наблюдается выход водорода в картер подшипника (сливную камеру на стороне воздуха).

Нормализация маслоснабжения восстанавливает работоспособность кольцевого уплотнения.

Режим работы с пониженной частотой вращения для кольцевых уплотнений также не опасен, так как всегда сохраняется кольцевой зазор и жидкостное трение.

Износ баббита из-за загрязненного масла и вибрации вала приводит к увеличению зазора, увеличению расхода масла в сторону водорода и воздуха и к заметному понижению температуры баббита. Увеличение расхода масла в сторону водорода сопряжено с загрязнением газа и опасностью попадания масла в генератор. Увеличение расхода масла в сторону воздуха может явиться причиной пропуска водорода через уплотнения.

Кольцевые уплотнения заводского исполнения впервые были применены в турбогенераторах типов ТВ-50-2, ТВ2-100-2 и ТВ2-150-2 и предназначались для работы при избыточном давлении водорода 0,005-0,05 МПа. Уплотнения характеризовались большим расходом масла - (30-35 л/мин), протекающим в сторону водорода по кольцевому радиальному зазору между вкладышем и валом и через неплотности сопряжения вкладыша с корпусом, что приводило к быстрому загрязнению водорода воздухом, выделяющимся из масла, и требовало вакуумной обработки масла (применения маслоочистительных установок). Другим существенным недостатком кольцевых уплотнений являлась недостаточная компенсация давления водорода на боковые поверхности вкладыша, что вызывало значительные силы трения между вкладышем и корпусом и приводило к интенсивному износу рабочей поверхности вкладыша и попаданию водорода в картер подшипника.

В последующем кольцевые уплотнения генераторов серии ТВ подверглись значительным усовершенствованиям, направленным на устранение выявленных недостатков. Благодаря принятым заводом-изготовителем, ремонтными и эксплуатационными предприятиями мерам удалось добиться приемлемой работы кольцевых уплотнений даже в условиях перевода генераторов серии ТВ на более высокое давление водорода (0,1-0,15 МПа).

К преимуществам кольцевых уплотнений вала следует отнести простоту их конструкции, нечувствительность к осевым перемещениям вала и живучесть при нарушении их маслоснабжения.

Модернизированные кольцевые уплотнения (включая трехпоточные уплотнения исполнения предприятия "Мосэнергоремонт") до сих пор находятся в эксплуатации на ряде турбогенераторов серии ТВ. Участи генераторов этой серии кольцевые уплотнения были заменены уплотнениями торцевого типа, уже работавшими в то время при более высоком давлении водорода.

Повышение единичной мощности турбогенераторов до 300-500 МВт и сопутствующее этому повышение избыточного давления водорода до 0,35-0,4 МПа привело к повсеместному применению уплотнений вала торцевого типа. Уплотнения данного типа имеют незначительные расходы масла в сторону водорода (3-5 л/мин) и, следовательно, малую степень загрязнения водорода, что позволило упростить схему их маслоснабжения (отказаться от ненадежно работающей маслоочистительной установки, перейти на питание уплотнений маслом из системы смазки подшипников турбоагрегата).

Уплотнение торцевого типа (см. рис. 1) состоит из вкладыша и корпуса, крепящегося к торцевому щиту. В качестве уплотнения зазора между вкладышем и корпусом уплотнения используется специальный резиновый шнур, помещаемый в прямоугольные канавки, выполненные во вкладыше. Запирающий масляный слой создается между торцевой поверхностью вкладыша и боковой поверхностью упорного диска вала. Усилие от давления масла в масляном слое, возрастающее по мере увеличения частоты вращения за счет клиновой разделки рабочей поверхности вкладыша, старается отжать последний от вала и разорвать масляную пленку. Для предотвращения этого явления искусственно создается усилие прижатия, которое уравновешивает усилие отжатия вкладыша от упорного диска. В зависимости от конструкции уплотнений прижим вкладыша к валу создается посредством совместного действия специальных пружин, давления водорода и уплотняющего масла (рис. 1, б, турбогенераторы типов ТВВ-165-2, ТВВ-200-2 и др.) или пружин и давления водорода (рис. 1, а, турбогенераторы серий ТГВ-200, ТГВ-300 и ТВФ мощностью 60-120 МВт) или давления водорода и прижимающего масла (рис. 1, г, турбогенераторы типов ТВВ-200-2А, ТВВ-320-2 с двухкамерными уплотнениями заводского исполнения, а также генераторы ТГВ-25, ТВ2-30-2, ТBC-30, ТВ-50-2, ТВ-60-2, ТВ2-100-2 и ТВ2-150-2 с двухкамерными уплотнениями, выполненными по проектам АО "ЦКБ Энергоремонт" и ремонтных предприятий). На ряде турбогенераторов (ТВ-60-2 и ТВФ-100-2) с уплотнениями заводского исполнения давление уплотняющего масла частично разгружает вкладыш от его прижатия к валу, осуществляемого давлением водорода и пружин (рис. 1, в).

В эксплуатации имеются также уплотнения вала, реконструированные по проекту ремонтного предприятия "Ростовэнергоремонт", в которых вкладыш отодвигается от вала при исчезновении давления уплотняющего и прижимающего масла, что обеспечивает их полную сохранность и готовность к работе при восстановлении маслоснабжения. Широкого применения такие уплотнения не получили, так как требуются специальные устройства для выброса водорода из генератора при прекращении подачи масла.

Рабочая поверхность вкладыша уплотнения торцевого типа (рис. 2) залита баббитом, имеющим специальную разделку, состоящую из чередующихся в тангенциальном направлении клиновых и плоских площадок, разделенных радиальными канавками, кольцевой канавки, наружного и внутреннего кольцевых поясков.

Рис. 2. Конструкции рабочих поверхностей вкладышей уплотнений торцевого типа:

а - конструкция, примененная АО "Электросила"; б - конструкция, примененная заводом "Электротяжмаш" на турбогенераторе ТГВ-300:

1 - внутренний кольцевой уплотняющий поясок; 2 - кольцевая канавка; 3 - радиальная канавка; 4 - клиновая несущая поверхность; 5 - радиальная плоская площадка; 6 - наружный кольцевой поясок; 7 - отсек кольцевой канавки; 8 - отверстие для подвода масла; 9 - перегородка

Клиновые площадки при номинальной частоте вращения ротора являются основным несущим элементом, обеспечивающим образование сплошной масляной пленки толщиной 0,08-0,15 мм между упорным диском вала и вкладышем, смазывающей рабочие поверхности и отводящей потери трения. Через эти площадки и наружный поясок (сплошной или прерывистый в виде "сапожков") проходит основной поток масла на сторону воздуха, достигающий 95% общего расхода масла, поступающего в уплотнение.

Плоские площадки контактируют с поверхностью упорного диска при отсутствии сплошной масляной пленки, т.е. при низких частотах вращения и работе от ВПУ.

Между несущей поверхностью и внутренним кольцевым пояском располагается кольцевая канавка (сплошная или прерывистая), в которую подается уплотняющее масло под давлением, превосходящим давление водорода. Эта канавка вместе с внутренним пояском обеспечивает герметизацию газового объема генератора и незначительный расход масла в сторону водорода.

Газовый объем генератора отделен от камеры слива масла в сторону водорода маслоуловителями лабиринтного типа.

Слив масла, прошедшего на сторону воздуха, осуществляется в картер опорного подшипника.

Вкладыш удерживается от вращения посредством шпоночного узла, в конструкцию и технологию изготовления которого позднее были внесены существенные улучшения (приложение 1).

При номинальной частоте вращения в масляном слое между клиновыми площадками вкладыша и диском вала возникает гидродинамическое усилие, которое, суммируясь с гидростатическим усилием на плоских площадках баббитовой поверхности, уравновешивает усилие прижатия вкладыша к упорному диску. При этом обеспечивается жидкостное трение. В режимах работы с пониженной частотой вращения (пуск, останов турбоагрегата, вращение от ВПУ) гидродинамическое усилие значительно снижается и возникает полусухое трение между вкладышем и диском. В этом режиме усилие, прижимающее вкладыш к диску, воспринимается меньшей площадью баббитовой поверхности - только плоскими площадками. Если удельное давление на баббит в режиме полусухого трения велико, то неизбежен ускоренный износ баббита, который накапливается при повторении подобных режимов и особенно при продолжительном вращении от ВПУ. В результате износа уменьшаются несущие клиновые площадки, снижается гидродинамическое усилие и несущая способность вкладыша. Уравновешивание усилия, прижимающего вкладыш к диску, при номинальной частоте вращения достигается при уменьшенной толщине масляного слоя, что ведет к повышению температуры вкладыша в процесс эксплуатации. При ускоренном износе баббита толщина масляного слоя может снизиться настолько, что дальнейшее повышение температуры баббита может привести к его размягчению, затягиванию в направлении вращения вала и перекрытию маслоподающих отверстий во вкладыше. Отдельные заводы-изготовители (АО "Электросила") для снижения удельных давлений на трущихся поверхностях и износа баббита при низкой частоте вращения ротора идут на некоторое увеличение площади поверхностей сухого трения (плоских площадок).

Наиболее высокие удельные давления на баббит вкладышей в режиме полусухого трения имеют турбогенераторы серии ТГВ мощностью 200 и 300 МВт, что приводит к интенсивному износу вкладышей. Для предотвращения этого явления завод "Электротяжмаш" был вынужден пойти на увеличение перепада давлений масло-водород до 0,2 МПа, что позволило снизить удельные давления в 2-3 раза и обеспечить сохранность баббитовой поверхности.

Отличительной особенностью торцевых уплотнений является то, что усилие в масляном слое зависит от минимальной толщины этого слоя - резко увеличивается при уменьшении толщины слоя и уменьшается при увеличении толщины слоя. Это обстоятельство предопределяет способность вкладыша самоустанавливаться. При пусках и остановах турбоагрегата, росте или снижении нагрузки происходит тепловое перемещение его валопровода, а, следовательно, меняется положение упорных дисков относительно корпусов уплотнений вала. При отходе упорного диска от баббитовой заливки увеличивается минимальная толщина масляного слоя и снижается усилие в масляном клине. Усилие прижатия вкладыша становится выше отжимающего усилия в масляной пленке. Когда разность усилий превзойдет усилие трения вкладыша в корпусе, вкладыш сдвинется и последует за валом. При сближении упорного диска с вкладышем толщина масляного слоя уменьшается и возрастает усилие в масляном клине. Появляется неуравновешенная разность усилий, которая отжимает вкладыш от вала, преодолевая силы трения.

Существенным недостатком торцевых уплотнений вала является их повышенная чувствительность к нарушению их маслоснабжения. Кратковременное снижение давления масла (перепада давлений масло-водород) при нарушении работы системы маслоснабжения (например, при переключениях масляных насосов уплотнений - МНУ, действии АВР МНУ и т.п.) для большинства конструкций торцевых уплотнений представляет большую опасность как из-за возможного пропуска водорода в картеры подшипников, так и потому, что несущая способность вкладышей резко снижается, нарушается равновесие усилий, действующих на вкладыш, возникает режим полусухого трения. При сохранении достаточно высоких давлений на вкладыш и большой частоте вращения это приводит к выплавлению баббита и повреждению упорных дисков вала ротора. Предотвращение указанных явлений обеспечивается схемными решениями такими, как применение в качестве основного источника маслоснабжения высоконадежного инжектора, а там, где его установка не представляется возможной, - использованием быстродействующего резервирования путем подачи масла от демпферного бака (ДБ).

Длительный опыт эксплуатации торцевых уплотнений вала разных конструкций выявил и такой их дефект, как недостаточная подвижность вкладышей при осевых перемещениях вала. Вкладыш торцевого уплотнения во всех режимах работы турбоагрегата (сбросы, наборы нагрузки и пр.) должен следовать за упорным диском вала ротора. Этому препятствуют силы трения в узлах установки уплотняющих резиновых шнуров, применяемых для герметизации зазоров между вкладышем и корпусом уплотнения. Наличие шлама в смазочном масле, ржавчины на трущихся поверхностях, конструктивные и технологические дефекты шпоночных узлов, некачественная установка уплотняющих шнуров способствуют заклиниванию, перекосам вкладыша в корпусе, что может приводить к выплавлению баббитовой заливки или прорыву водорода в картеры подшипников.

Трудностями обеспечения идеальной подвижности вкладышей на турбогенераторах большой мощности объясняется возрастание доли их повреждений, обусловленных застреванием вкладышей.

В связи с этим на водородозаполненных турбогенераторах мощностью 500 МВт и выше стали применяться кольцевые уплотнения усовершенствованных конструкций, рассчитанные на работу с давлением водорода до 0,5 МПа. Малые удельные нагрузки на баббитовую заливку вкладыша, определяемые лишь массой вкладыша, и высокая его живучесть в режимах полусухого трения, независимость работы от осевых перемещений вала, позитивные конструктивные решения по компенсации усилий прижатия вкладыша к корпусу (от давления водорода) и снижению расходов масла в сторону водорода явились основанием для широкого использования кольцевых уплотнений на всех турбогенераторах единой серии ТВФ и ТВВ, а также на турбогенераторах серии ТГВ с водоводородным охлаждением.

1.2. Схемы маслоснабжения уплотнений вала турбогенераторов с водородным охлаждением также, как и уплотнения вала, по мере их перевода на повышенное давление водорода претерпели значительные изменения и улучшения и в первоначальном виде мало где сохранились. В частности, модернизация схем маслоснабжения торцевых и кольцевых уплотнений вала шла в направлении отказа от использования отдельного бака маслоснабжения с переводом питания уплотнений маслом, забираемым из главного масляного бака турбины (ГМБ), исключения из схемы маслоочистительного оборудования, расширительного и воздухоотделительного бачков, замены электронных регуляторов давления масла механическими дифференциальными, установки ДБ и т.д.

На рис. 3, 5-8 приведены наиболее распространенные схемы маслоснабжения уплотнений вала современных турбогенераторов мощностью 60 МВт и выше,

1.2.1. Схема, изображенная на рис. 3, взята за основу при описании состава оборудования, его назначения и взаимодействия.

Рис. 3. Схема маслоснабжения уплотнений вала торцевого типа турбогенераторов ТВВ-200-2, ТВВ-165-2, ТВФ-100-2, ТВФ-60-2:

1 - инжектор; 2 - масляный насос с приводом постоянного тока; 3 - масляный насос с приводом переменного тока; 4 - маслоохладитель МОВ-1; 5 - сетчатый фильтр ФМ-50;

6 - регулятор давления РПД-14; 7 - электроконтактный манометр; 8 - гидрозатвор ЗГ-500;

9 - масломерное стекло; 10 - демпферный бак; 11 - эксгаустер; 12 - маслобак турбины;